Deterministic cavity quantum electrodynamics with trapped ions
نویسندگان
چکیده
We have employed radio-frequency trapping to localize a single Ca-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion’s wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2–P1/2 transition of Ca (λ = 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates.
منابع مشابه
Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملOptimized Multi-Ion Cavity Coupling.
Recent technological advances in cavity quantum electrodynamics (CQED) are paving the way to utilize multiple quantum emitters confined in a single optical cavity. In such systems, it is crucially important to control the quantum mechanical coupling of individual emitters to the cavity mode. In this regard, combining ion trap technologies with CQED provides a particularly promising approach due...
متن کاملSingle trapped ions interacting with low- and high-finesse optical cavities
The presence of mirrors modifies both the coherent coupling of an atom to a light mode and its spontaneous emission into the mode [1]. We study such cavity QED effects experimentally with single ions and optical cavities. We focus on two examples which are equally interesting as fundamental systems and for application in quantum information processing. (i) By retroreflecting the fluorescence of...
متن کاملQuantum computing with four-particle decoherence-free states in an ion trap
Much effort has been put into quantum computing over the past few years due to great advantages of quantum computing over the computation made in existing computers for solving classically intractable problems @1,2# and finding tractable solutions more rapidly @3#. Some systems @4# such as nuclear magnetic resonance, trapped ions, cavity quantum electrodynamics, and optical photons have been pr...
متن کاملCalculation of Kolmogorov Entropy in Cavity Quantum Electrodynamics
In this paper Kolomogorov entropy of a simulated cavity quantum electrodynamics in a multi-partite system consisting of eight quantum dots in interaction with one cavity mode has been estimated. It has been shown that the Kolmogorov Entropy monotonically increases with the increasing coupling strength, which is a sufficient condition for chaotic behavior under ultrastrong coupling regime. The a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003